
40 The Delphi Magazine Issue 36

New COM Features
In Delphi 4: An Overview
by Steve Teixeira

Delphi 3 brought an unbeliev-
able number of new COM fea-

tures to the party including
language support for interfaces
and IUnknown, one step ActiveX
control creation, ActiveForms and
web deployment. In one version
Delphi went from nominal support
for COM technologies to perhaps
the best COM development tool
around [Biased? Steve? Nah! Ed].
With such an awesome opening
act, the question is: what could we
do for an encore? The answer:
Delphi 4. Delphi 4 extends Delphi’s
reach into the world of COM with
new features such as language
enhancements, threading support,
MTS integration and framework
improvements designed to make
your life easier.

Language Enhancements
Only one new COM-related lan-
guage enhancement was added for
this release, but what a powerful
feature it is. New to Delphi 4 is the
implements directive, which
enables you to delegate the imple-
mentation of interface methods to
another class or interface. This
technique is sometimes called
implementation by delegation.
Implements is used as the last direc-
tive on a property of class or inter-
face type as shown in Listing 1.

The use of implements in the
Listing 1 example instructs the
compiler to look to the Foo prop-
erty for the methods that imple-
ment the IFoo interface. The type of
the property must be a class that
contains IFoo methods or an inter-
face of type IFoo or a descendant of
IFoo. You can also provide a
comma-delimited list of interfaces
following the implements directive,
in which case the type of the prop-
erty must contain the methods to
implement the multiple interfaces.

The implements directive buys
you two key advantages in your

type
TSomeClass = class(TInterfacedObject, IFoo)
// stuff
function GetFoo: TFoo;
property Foo: TFoo read GetFoo imlements IFoo;
// stuff

end;
type
TSomeClass = class(TInterfacedObject, IFoo)
// stuff
function GetFoo: TFoo;
property Foo: TFoo read GetFoo imlements IFoo;
// stuff

end;

➤ Listing 1

development. First, it allows you to
perform aggregation in a no-hassle
manner (if you’re not familiar with
aggregation, it’s a COM concept
pertaining to the combination of
multiple classes so that they
appear as one). Second, it allows
you to defer the consumption of
resources necessary to implement
an interface until it is absolutely
necessary. For example, say there
was an interface whose implemen-
tation requires allocation of a 1Mb
bitmap, but clients seldom require
that interface. You probably
wouldn’t want to implement that
interface all the time ‘just in case’
because that would be a waste of
resources. Using implements, you
could create the class to imple-
ment the interface on demand in
the property read method.

One final twist on implements is
that the inner class does not need
to implement all of the methods of
the specified interface(s). You can
split the implementation of the

type
IBar = interface
['{87218660-10D7-11D2-AE5C-00A024E3867F}']
procedure M1;
procedure M2;

end;
TBar = class
procedure M1; // TFoo.IBar.M1 is here!

end;
TFoo = class(TInterfacedObject, IBar)
private
FBar: TBar;

protected
procedure M2; // TFoo.IBar.M2 is here!
property Bar: TBar read FBar implements IBar;

end;

➤ Listing 2

methods between the inner and
outer classes as shown in the
Listing 2 code.

Threading Model Support
Every COM object operates in a
particular threading model that
dictates how an object can be
manipulated in a multithreaded
environment. When a COM server
is registered, each of the COM
objects contained in that server
should register the threading
model they support. For COM
objects written in Delphi, the
threading model chosen in the
Automation, ActiveX control, or
COM object wizards dictates how a
control is registered. The common
COM threading models include the
following.

In single threading the entire
COM server runs on a single
thread.

Second up is apartment thread-
ing, also known as Single Threaded
Apartment (STA). Each COM

42 The Delphi Magazine Issue 36

object executes within the context
of its own thread, and multiple
instances of the same type of COM
object can execute within separate
threads. Because of this, thread
synchronization objects must pro-
tect data that is shared between
object instances (such as global
variables) when appropriate.

In free threading, also known as
Multithreaded Apartment (MTA), a
client can call a method of an
object on any thread at any time.
This means that the COM object
must protect even its own instance
data from simultaneous access by
multiple threads.

Finally, the both threading model
specifies that a COM object
supports both apartment and free
threading.

Keep in mind that merely select-
ing the desired threading model in
the wizard doesn’t guarantee that
your COM object will be safe for
that threading model. You must
write the code to ensure that your
COM servers operate correctly for
the threading model you wish to
support. This most often includes
using thread synchronization
objects to protect access to global
or instance data in your COM
objects.

To aid you in your quest for
thread safety, the ComObj, ComServ,
and Classes units have been retro-
fitted to function properly in a
multi-threaded environment. For
example, the COM class creation,
destruction, and reference
counting logic, as well as the VCL
streaming mechanism, are now all
thread safe.

COM Object Wizard
Delphi 4 now provides a COM
object wizard to assist you in the
creation of simple (that is, non-
Automation) COM objects. Found
on the ActiveX page of the File |
New dialog, this is a relatively
straightforward wizard which
allows you to specify the name,
implemented interfaces, threading
model and description for a COM
object. Once these items are speci-
fied and you select OK, the wizard
will generate the proper source
code. This can be a big time-saver
for creating plain old COM servers

like shell extensions or specialized
in-process servers.

The COM object wizard also pro-
vides the option of whether or not
to include a type library with your
COM object. If you choose to
include a type library, then you
design your interfaces interac-
tively in the type library editor in a
manner similar to Automation
objects. Without a type library, you
simply tell the wizard what pre-
defined interfaces you intend to
implement and then implement the
methods of those interfaces in the
generated code.

MTS
Delphi 4 Client/Server Suite con-
tains new wizards which enable
you to create special Automation
objects and Remote DataModules
that are designed to function effi-
ciently within the Microsoft Trans-
action Server (MTS) environment.
Briefly, MTS is a host environment
for ActiveX servers that enables
you to build distributed compo-
nents that can take advantage of
services such as transaction proc-
essing, security, and resource
sharing.

The new MTS wizards create
objects which implement the IOb-
jectControl interface, which is
required of MTS objects wishing to
support context-specific activa-
tion or deactivation activity or par-
ticipate in object pooling. Also,
Delphi MTS objects maintain a
property called ObjectContext
which holds the IObjectContext
pointer that defines the MTS
object’s current context.

MTS is an enormous topic
worthy of many articles on its own,
so I won’t go into the nitty-gritty
details at this time. Watch this spot
in future issues for articles on MTS.

Automation
Object Event Support
The Delphi 4 Automation object
wizard now provides an option to

generate the code necessary to
support an outgoing events inter-
face on the Automation object.
Having the wizard generate event
support code for you is only half
the battle, though. You must also
define the events in the type
library editor and write the code
necessary to fire the events at the
appropriate time. But it is gener-
ally all straightforward work.

To demonstrate, you can create
an Automation object which fires
an event back to the clients when a
method is called in several simple
steps. Firstly, select Automation
object from the ActiveX page of the
File | New dialog. Secondly, give
the object a name in the wizard
(say, TestObject), and check the
Generate Event Support Code check-
box. Click OK. The type library
editor will now show two inter-
faces: one called ITestObject,
which is the default dispatch inter-
face for your Automation object,
and one called ITestObjectEvents,
which is the outgoing events inter-
face for the object. Thirdly, add a
method with no parameters to the
ITestObject interface called Foo.
Next, add a method with no
parameters to the ITestObjectE-
vents interface called OnFoo.
Finally, refresh the type library,
and, in the implementation for the
TTestObject.Foo method, add the
line of code necessary to fire the
OnFoo event:

That’s all there is to it!

Delphi ActiveX
Framework Enhancements
Finally, a couple of minor improve-
ments were made to the Delphi
ActiveX control framework (DAX)
that make it a little easier to write
controls for use on the world wide
web. In particular, the IPersist-
PropertyBag interface has been
implemented to enable you to set
properties for your ActiveX con-
trols using plain text in your HTML
pages. Listing 4 shows some

procedure TTestObject.Foo;
begin
// Foo implementation code goes here
if FEvents <> nil then FEvents.OnFoo; // Fire event

end;

➤ Listing 3

August 1998 The Delphi Magazine 43

sample HTML code that sets Cap-
tion property for an ActiveX
control written in Delphi 4.

In addition to property bag sup-
port, Delphi 4 ActiveX controls
now implement the IObjectSafety
interface in order to indicate to
web browsers that a web deployed
ActiveX control is safe to be
embedded in an HTML page.

One important note on this is
that the default implementation of
this interface always claims that
your control is safe, even if you
implement your control to do
things which are considered
unsafe, such as writing to the regis-
try. It’s up to you to implement this
interface differently if your control
doesn’t meet the criterion for a

safe control as defined in the
ActiveX spec.

Last but not least, DAX now pro-
vides a partial implementation for
the IDataObject interface so that
Delphi 4 ActiveX controls function
correctly in MS Office products
such as Word, Excel, and Power-
Point. This is necessary because,
unlike most containers, these
Office products do their painting of
controls via metafiles in the IDa-
taObject.GetData method rather
than through the traditional IVie-
wObject.Draw method.

Conclusion
That about covers all the new COM
features found in Inprise’s latest
release of Borland Delphi. This was

<OBJECT
classid="clsid:FFCB1548-1111-11D2-AAB6-00C04FA370E8"
codebase="file://c:/temp/ButtonXControl1.ocx"#version=1,0,0,0
width=350
height=250
align=center
hspace=0
vspace=0

>
<param name = "Caption" value = "Hello world">
</OBJECT>

➤ Listing 4

kind of the 30,000 foot high-level
overview that gave you a taste of
everything. In future articles, I will
drill down into some of the individ-
ual topics covered in this article to
provide more in-depth insight and
techniques. Until then, enjoy your
new COM development tool!

Steve Teixeira is an R&D Engineer
at Inprise Corporation where he
works on the Borland Delphi and
Borland C++Builder products. He
is also the co-author of Delphi 4
Developer’s Guide from SAMS
Publishing.

Got a Delphi COM question that
you think would make a good
article? Email Steve at:
steixeira@inprise.com

For Delphi News

Check the
Developers Review

website at

www.itecuk.com

	Language Enhancements
	Threading Model Support
	COM Object Wizard
	MTS
	Automation Object Event Support
	Delphi ActiveX Framework Enhancements
	Conclusion

